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2. STRENGTHENING THE 

FOUNDATIONS 
 

§2.1. The Direct Sum of Matrices 

A square matrix written in the form 






A | B

⎯⎯⎯

C | D
 where A, 

D are square, is said to be partitioned. If two matrices are 

partitioned in the same way their sum and product can be 

obtained by treating them as 2  2 matrices whose 

components are matrices. 







A1 | B1

⎯⎯⎯

C1 | D1

 + 






A2 | B2

⎯⎯⎯

C2 | D2

 = 






A1 + A2 | B1 + B2

 ⎯⎯⎯⎯⎯⎯⎯

C1 + C2 | D1 + D2

 and 







A1 | B1

⎯⎯⎯

C1 | D1

 






A2 | B2

⎯⎯⎯

C2 | D2

 = 






A1A2 + B1C2 | A1B2 + B1D2

 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

C1A2 + D1C2 | C1B2 + D1D2

. 

 

This can be extended to more than two partitions of the 

rows and columns. 

 

The direct sum of two matrices is obtained by writing 

them diagonally and filling up the remaining components 

with zeros. In symbols: A  B = 






A | 0

⎯⎯⎯

0 | B
. 
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If A is m  m and B is n  n then A  B is (m + n)  (m + 

n). 

If A, B are invertible, (A  B)−1 = A−1  B−1. 

It is easy to show that AB() = A().B() and so tr(A 

 B) = tr(A) + tr(B) and |A  B| = |A|.|B|. The eigenvalues 

of A B are the eigenvalues of A together with the 

eigenvalues of B.  

Example 1: If A = 






1  2  3

4  5  6

7  8  9
  and B = 







10  20

30  40
  then A  

B = 











1  2  3   0   0

4  5  6   0   0

7  8  9   0   0

0  0  0  10  20

0  0  0  30  40

 .  

 

§2.2. The Tensor Product of Matrices 
If A = (aij) is m  n and B = (bij) is r  s, the tensor 

product of A and B is the mr  ns matrix A  B = (cij) 

where c(i-1)n+s, (j-1)n+t = aijbst. 

We can write it in partitioned form as A  B = 







a11B a12B...

a21B a22B...

... ... ...
. 

This makes it much easier to understand! 
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Example 2: If A = 






1  2

 34
  B = 







a b

c d
  then A  B = 









1 2

3 4
 
0 0

0 0

0 0

0 0

a b

c d

   and A  B = 









a b

c d
 
2a 2b

2c 2d
 

3a 3b

3c 3d
 

4a 4b

4c 4d

  

 

Theorem 1: Assuming the sizes are compatible: 

(1) AB  CD = (A  C)(B  D) 

(2)  and  are associative 

(3) (A  B)−1 = A−1  B−1 

(4) tr(A  B) = trA  trB. 

Proof: 

 

§ 2.3. Algebraic Integers 
 You need to know the familiar divisibility concepts 

and facts about integers, such as prime numbers and 

greatest common divisors. In particular you need to know 

that the greatest common divisor of integers a, b, or 

GCD(a, b) for short, can be expressed in the form ah + bk 

for some integers h, k. You also need to know something 

about algebraic integers. These are not quite the same as 

algebraic numbers. Here’s a short account of them. 

 

 An algebraic integer is a complex number that is 

a zero of a monic polynomial with integer coefficients. If 

we allow the coefficients to be rational the definition 

becomes that of an algebraic number. 
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Example 1:  
−1 + 5

2
 is an algebraic integer but 

−2 + 5

2
  

is an algebraic number, but not an algebraic integer. This 

is because 
−1 + 5

2
  is a zero of the monic integer 

polynomial 

x2 + x − 1. But if x = 
−2 + 5

2
  then x2 + 2x − ¼ = 0, 

showing that x is an algebraic number, but clearly it isn’t 

an algebraic number. Roots of unity, such as e2i/5, are 

clearly algebraic integers. 

 

Theorem 1: A complex number is an algebraic integer if 

and only if it is an eigenvalue of an integer matrix. 

Proof: If  is a non-zero eigenvalue of the integer matrix 

A it’s a zero of the characteristic polynomial of A. The 

coefficients of this polynomial are sums and differences 

of products of the coefficients of A and hence are integers. 

Moreover the leading coefficient of a characteristic 

polynomial is 1. So, such eigenvalues are algebraic 

integers. 

Now suppose that    is a zero of the integer polynomial 

xn + an−1x
n−1 + ... + a1x + a0.  

 

Consider the matrix: 



33 
 

A = 











0   1   0   0  ...  0  0

0   0   1   0  ...  0  0

...   ...   ...   ...   ...  ...   ...

0   0   0   0  ...  1  0

−a0 −a1 −a2 −a3  ...  −an−2 −an−1

     and the vector v 

= 









1



…

n−1

 . 

 

Then Av = v and so  is an eigenvalue of the integer 

matrix A. ☺ 

 

Theorem 2: ℚ  ℤ* = ℤ. 
Proof: Clearly ℤ  ℚ  ℤ*. 

Now let   ℚ  ℤ* and suppose  = 
r

s
   where r, s are 

coprime integers. 

For some a0, … an−1  ℤ, (r/s)n + an−1(r/s)n−1 … + a1(r/s) 

+ a0 = 0 whence 

rn + an−1r
n−1s + … + a1rs

n−1 + a0s
n = 0 and so s | rn. 

Since GCD(s, r) = 1, s = 1 and so   ℤ. ☺ 

 

The set of multiples of the complex number  is denoted 

by ℤ and the set of all integer linear combinations of the 

complex numbers 1, 2, … , n is denoted by: 

ℤ1 + … + ℤn. 
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Theorem 3: ℤ* is a ring. 

Proof: We first show that if R = ℤ1 + … + ℤn is a ring 

then each k  ℤ*. 

Suppose R is a ring. Then for each i, k the product ik  

R and hence is an integral linear combination of the i. 

Hence ik = 
j

aijkj for some aijk  ℤ. 

So if Ak = (aijk) and v = (i) then Akv = kv. Since A is an 

integer matrix, each k is an algebraic integer. 

Now let ,   ℤ* where n  ℤn−1 + … + ℤ and 

m  ℤm−1 + … + ℤ. 

Then ℤ + ℤ + … + ℤn−1 + ℤ + … + ℤn−1m−1 is a 

ring. 

Since it contains  +  and  − . 

R = ℤ + ℤ + … + ℤn−1 + ℤ + … + ℤn−1m−1 + ℤ( 

+ ) + ℤ( − ). 

Hence  + ,  −  and  are algebraic integers. ☺ 

 

§2.4. Babylonian Equations 
If we want to investigate all the character tables of 

a given size we need to find all groups with a given 

number of conjugacy classes. We shall see that there are 

only finitely many possible orders for a group with k 

conjugacy classes, and hence only finitely many k  k 

character tables for any k. For small values of  k  it is 

possible to catalogue them.  

The class equation of a finite group is: 

|G| = n1 + n2 + … nk 



35 
 

where the ni’s are the sizes of the conjugacy classes and 

n1  n2  …  nk. 

When there are  c  classes of a given size n, we sometimes 

write n*c instead of n + n + … + n. 

 

Example 1: 

The class equation of S4 is 24 = 1 + 3 + 6*2 + 8 and for 

D16 it is 16 = 1*2 + 2*3 + 4*2. 

 

 Often the class equation completely characterises 

the group, but there are some groups that share the same 

class equation. 

 

Example 2: 

Both D8 = A, B | A4 = B2 = 1, BA = A−1B and Q8 = A, 

B | A4 = 1, B2 = A2, BA = A−1B have the class equation  

8 = 1*2 + 2*3. 

 

 Now each ni is the index of the corresponding 

centraliser in G and so divides |G|. If we divide a class 

equation by |G| we get an equation of the form: 

1 = 
1

m1
 + … + 

1

mk
  

where each mi is a positive integer. 

 

A Babylonian equation is an equation of the form: 

1 = 
1

m1
 + … + 

1

mk
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where each mi  ℤ+ and m1  m2  ..  mk. The length of 

such an equation is k. 
 

Example 3: The class equation for S4 is 24 = 1 + 3 + 6 + 

6 + 8 which gives the Babylonian equation: 1 = 
1

3
 + 

1

4
 + 

1

4
 

+ 
1

8
 + 

1

24
 . 

 

Theorem 1: There are only finitely many Babylonian 

equations of a given length. 

Proof: For a Babylonian equation of length k: 1 = 
1

m1
 + … 

+ 
1

mk
 suppose we have proved that there are finitely many 

choices for m1, m2, … mi. 

Let i < k and let M = 1 − 
1

m1
  − 

1

m2
  − … − 

1

mi
 . Then 

1

mi+1
 

+ … + 
1

mk
 = M and we have finitely many choices for M. 

Since 
1

mi+1
    …  

1

mk
 we have M  

k − i

mi+1
 . 

So 
1

 1 − M
  < mi+1   

k − i

M
 , giving only finitely many 

choices for mi+1. 

Corollary: There are only finitely many class equations 

of a given length and hence only finitely many character 

tables of a given size. 
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Example 3: Babylonian equations of length  4: 

 

 

 

 

Length 3 

1 = 
1

2
  + 

1

3
  + 

1

6
  1 = 

1

2
  + 

1

4
  + 

1

4
  1 = 

1

3
  + 

1

3
  + 

1

3
  

 

Length 4 

1 = 
1

 2
 + 

1

 3
  + 

1

 7
  + 

1

 42
  1 = 

1

 2
 + 

1

 3
  + 

1

 8
  + 

1

 24
  1 = 

1

 2
 + 

1

 3
  + 

1

 9
  + 

1

 18
  

1 = 
1

 2
 + 

1

 3
  + 

1

 10
  + 

1

 15
  1 = 

1

 2
 + 

1

 3
  + 

1

 12
  + 

1

 12
  1 = 

1

 2
 + 

1

 4
  + 

1

 5
  + 

1

 20
  

1 = 
1

 2
 + 

1

 4
  + 

1

 6
  + 

1

 12
  1 = 

1

 2
 + 

1

 4
  + 

1

 8
  + 

1

 8
  1 = 

1

 2
 + 

1

 5
  + 

1

 5
  + 

1

 10
  

1 = 
1

 2
 + 

1

 6
  + 

1

 6
  + 

1

 6
  1 = 

1

 3
 + 

1

 3
  + 

1

 4
  + 

1

 12
  1 = 

1

 3
 + 

1

 3
  + 

1

 6
  + 

1

 6
  

1 = 
1

 3
 + 

1

 4
  + 

1

 4
  + 

1

 6
  1 = 

1

 4
 + 

1

 4
  + 

1

 4
  + 

1

 4
  

 

 

Length 

1 

Length 

2 

1 = 1 
1 = 

1

2
  + 

1

2
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Example 4: Class equations of length  3: 

1 = 1 corresponds to the trivial group; 

1 = 
1

2
  + 

1

2
 gives the class equation 2 = 1 + 1 which 

corresponds to C2 only;. 

1 = 
1

2
  + 

1

3
  + 

1

6
  gives the class equation 6 = 1 + 2 + 3 which 

corresponds to S3 only; 

1 = 
1

2
  + 

1

4
  + 

1

4
  gives the class equation 4 = 1 + 1 + 2 which 

doesn’t arise in either of the two groups of order 4; 

1 = 
1

3
  + 

1

3
  + 

1

3
  gives the class equation 3 = 1 + 1 + 1 which 

corresponds to C3 only. 
 

§2.5. Some Elementary Tests for Potential 

Class Equations 
 Much of the material in this chapter arose in the 

1980s from my teaching a course on group theory. 

It’s a routine exercise to generate all Babylonian 

equations of a given length and to obtain a list of possible 

class equations. The problem is to exclude those that do 

not arise. A subsequent problem is to identify the groups 

that give rise to the potential class equations. 

We’ll focus on the first problem by investigating 

properties that class equations must satisfy. Each such 

property will give rise to a test. Then when we have a 

potential class equation we put it through the battery of 
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tests. Only if it survives do we go in search for possible 

groups. If, after a reasonable amount of effort, we can find 

no such group we might then look for another reason to 

exclude that class equation. The set of tests we shall 

develop will catch the vast majority of false class 

equations – quite probably no such set of tests will ever 

catch them all, for as the number of conjugacy classes 

increases there appear to be more and more subtle reasons 

that exclude a given class equation. 

 

Theorem 2 (Z Test): Suppose |G| = N and |Z(G)| = m. 

If the class equation for G is N = 1*m + nm+1 + nm+2 + … 

+ nm where each nm+1 > 1 then  m  must properly divide 

N/ni for each i. 

Proof: Suppose g  Z(G). Then |CG(g)| = N/ni for some 

i > m. 

Since g  CG(g), Z(G) < CG(g) and so m properly divides 

N/ni. ☺ 

 

Example 5: 84 = 1 + 1 + 12 + 21 + 21 + 28 is not a class 

equation. 

 

Theorem 3 (pq Test): Suppose N = 1 + n2 + n3 + … + nk 

is the class equations for a group G and, for some  i > 1, 

N/ni = paqb, where p, q are distinct primes and a, b  1. 

Then the number of  j  for which pq divides N/nj is at least 

4. 

Proof: We need to find four conjugacy classes where the 

orders of the centralisers are all divisible by pq. 
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Suppose |CG(g)| = paqb where g ≠ 1 and suppose that g  has 

order  d. 

Then either p or q  divides d. 

Suppose, without loss of generality,p divides d, in which 

case some power of g has order p. 

By Cauchy’s theorem CG(g) contains an element of order  

q, which commutes with that power of order p and so G 

has an element of order pq and so elements of order 1, p, 

q and pq whose centralisers have orders divisible by pq. 

As the orders are different they must belong to distinct 

conjugacy classes. 

 

Example 6: 120 = 1 + 5 + 20 + 24 + 30 + 40 is not a class 

equation because if it was the respective centralisers 

would have orders 120, 24, 6, 5, 4 and 3. 

 
Theorem 4 (pN Test): Suppose p is prime and pN = 1 + 

n2 + n3 + … + nk−t + N*t is the class equation for a group 

G where N > 1, t  1 and nk−t < N 

(that is, G has precisely t classes of size N). 

Then:  (i) t | p − 1 and 

          (ii) N  
p−1

t
 (mod p). 

Proof:  Let  be a class of size N and let g  . Then 

|CG(g)| = p and so CG(g) = g. 

If gs ≠ 1 then CG(gs) = g and so gs lies in a conjugacy 

class of size N. 
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Let  be any conjugacy class of size N and let g act on 

it by conjugation. 

The orbits have sizes 1 or p. But orbits of size 1 

correspond to non-trivial powers of g, and there are p − 1 

of these altogether, so the number of orbits of size 1 in  

is at most p −1. 

Now if N = np + r where 0  r < p there must be exactly 

r orbits of size 1 in . 

So there are exactly r powers of g in each of the t 

conjugacy classes of size N and hence 

p − 1 = rt. Hence N  r = 
p − 1

t
 (mod p). 

Example 7: 216 = 1 + 8 + 27 + 54 + 54 + 72 is not a class 

equation. 

Here p = 3, t = 1 and N = 72  0(mod 3).  

 

§2.6. The 2N Test 

 The largest possible size of a conjugacy class, for a 

non-trivial group of order M, is M/2. Of course there can 

only be one of these and its elements must have order 2.In 

fact the class equation of such a group is completely 

determined by this property.  

 

Theorem 5 (2N test):  Let |G| = 2N and let  be a 

conjugacy class of size N. 

Then N is odd and the class equation for G is 2N = 1 + 2 

+ 2 + … + 2 + N = 1 + 2*





N − 1

2  . 
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Proof: 

(1) The elements of  have order 2 and commute only 

with 1 and themselves: 

This is because the centralisers of these elements have 

order 2N/N. 

 

(2) H = G –  is a normal subgroup of G: 

H clearly contains 1 and is closed under inverses. Let x, y 

be distinct elements of . 

If xy   then (xy)2 = x2y2 = 1, so xy = yx and hence y  

CG(x), a contradiction. Hence H is a subgroup of G and, 

being a subgroup of index 2, it is a normal subgroup. 

 

 H  

H H K 

  H 

(3) H is abelian: 

Let h  H and k  . If hk  H then k  H. Hence hk  

 and so (hk)2 = 1. 

Thus k−1hk = h−1 for all h  H and so h → h−1 is an 

automorphism of H. 

If h1, h2  H then (h1h2)
−1 = h1

−1h2
−1 = (h2h1)

−1 and so h1h2 

= h2h1. 
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(4) N = |H| is odd. 

If |H| is even then H would contain an element h of order 

2. 

Since h = h−1  it follows that h commutes with k, a 

contradiction. 

 

(5) The class equation for G is 2N = 1 + 2 + 2 + … + 2 

+ N. 

Since k−1hk = h−1 for all k  K and all non-trivial h  H, 

the conjugacy classes, apart from {1} and , are all of the 

form {h, h−1}. 

 

(6) N is odd. 

 

Example 8: 18 = 1 + 2 + 6 + 9 is not a class equation. 
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